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Abstract: The paper concerns a brief introduction to (or rather a mere degustation of) the theory of multidimensional
probabilistic distributions and causal inference as a supportive tool for managerial decision making. More specifically, in vast
majority of cases the managers face the need to make a decision under risk or uncertainty and need more or less
sophisticated tools as a support of their decisions. A bunch of exact methods based on probability theory were developed,
but it is apparent that the natural way of thinking often relies on the terms of cause and effect. This can be seen in the
popularity of “soft” tools like cognitive maps and influence diagrams. The paper therefore brings an introduction to the
methodology providing a possibility to perform exact probabilistic calculations in models representing causal relations and
particularly focuses on the so called interventions, i.e., actions resulting in setting a variable to some value by a decision or
regulation. A simplified introductory example is proposed and solved using the Pearl’s calculus of intervention. To show the
connection with “soft” methods, the author presents this simple problem as an influence diagram computationally handled
by sophisticated software tool, namely Lumina Analytica. This software visually represents the problem as well known
influence diagrams enriched by numerous mathematical tools (in our case probabilistic inference, but in general it can

perform tasks like Monte Carlo methods in scenario analysis, sensitivity analysis, Bayesian networks, etc.).
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1. INTRODUCTION AND MOTIVATION

From the philosophical perspective, the paper deals with
the essential themes of human thinking: uncertainty and
causality. Relations of dependency and causality rank
among the crucial universal concepts of the philosophy and
science. The first scientific utilization of the notion of cause
dates back to the ancient times. Let us pick up, e.g., the
Aristotle's four causes [2]: the material cause, the formal
cause, the efficient cause and the final cause. Here the
efficient (or moving) cause has properties which are closest
to the modern understanding of the cause, i.e., thing that
acts in such a way that it leads to an effect in another thing.
The development of physics in the 17th century brought a
shift of conception of cause from this active role of "mover"
towards perceiving the cause rather as inactive article in the
implication chain of the laws of nature. The notions of
dependency and independency originate in nineteenth
century in the field of differential and integral calculus and
were often used in twentieth century within the rapidly
developing domains of probability and statistics.

Though the notions of cause and effect appear to rank
about the cornerstones of human reasoning, statistical
methods almost completely fail to address it. The bunch of
methods in the field of statistical analysis and probability
cannot handle the causal relations among the analyzed
variables. This deflection from the causation as a basic mean
for the expressing of the relation between a pair of variables
originated with the famous Galton's interpretation of
correlation. The well-known assertion says "Correlation
does not imply causation." Many examples are shown in the
textbooks where some common cause (called confound)
significantly affects the correlated variables. For explanation
of the basic notions, see a book focused on causal inference
in experimental design by William Shadish et al. [12].

As we mentioned, the causality can’t be proved by
means of statistics. Of course, there are cases when
statistical tools give a strong evidence for the existence of
causal relation. In natural sciences, the experimental design
provides a possibility to search for causes of some effect. In
strictly controlled tests scientists always can repeat the
application of some drug to laboratory mice or compare use
of different operating techniques on sufficiently large
sample. But it is impossible to run some historical events
repeatedly in different setting, the government cannot
afford to repeat an intervention in economy of a state and
managers cannot afford to try different types of assembly
lines in their enterprise. Such impossibility leads us to the
need to perform an analysis of collected data and
investigate the causal relations.

Contemporary managers are used to perform plenty of
analyses using the modern information tools and systems.
These provide a possibility to easily generate enormous
quantity of information based on the questions the manager
is interested in. But often they misinterpret the results and
confuse the operation of conditioning with the result of an
intervention. Whereas the first technique is a general
operation employed in probabilistic tools (see, e.g., Finn
Jensen and Thomas Nielsen [5]) the latter possibility is
available, e.g., in causal networks and their equivalents
developed by Judea Pearl [9]. But the difference can be
significant, in some situations really substantive. For
instance, consider the historical situation when alternative
bio-fuels were just a marginal choice. There was quite low
volume of demand for the alternative types of fuel in the
situation of open market. But apparently, the situation
changed when the legal act prescribed the obligatory mixing
with the conventional fuel. To model the difference
correctly one needs to carefully distinguish between the
operations of conditioning and intervention.




VLADISLAV BiNA — LUCIE VACHOVA

Probabilistic and Causality Tools for Support of Managerial Decisions

The Pearl's approach to causality modeling and the
calculus of intervention have inspired many contemporary
researchers in different fields of management, e.g.,
applications in strategic management by Michael Ryall [10],
in psychology by York Hagmayer et al. [3], in educational
research and other social sciences Richard Murnane [8] or
an introduction to causal inference for the researchers in
social sciences by Stephen Morgan and Christopher Winship
[7]. The authors already published an economic application
of the classical Pearl’s graphical models [13], and,
simultaneously, started the development of an original
“algebraic” (non-graphical) theoretical tool based on
compositional models [1].

2. METHODOLOGY AND BASIC NOTIONS

We said above that there is a significant difference
between the correlation and causation. Correlation
describes symmetrical dependence of variables. In contrast,
causation is an asymmetric relation, and this is a frequent
source of confusion when these two different relations are
incorrectly exchanged and wrong deductions are obtained.

The first quantitative tools for handling the cause and
effect appeared as an augmentation of the Galton's and
Person's concept of correlation and later the approaches of
multiple regression analysis into the tool called path
analysis. This approach was developed by Sewall Wright in
1920s [14] and can be perceived as aspecial case of
structural equation model (SEM) developed in 1940s by
Trygve Haavelmo [4]. The SEM approach is said to combine
the quantitative data with qualitative assumptions on causal
relations and thus gives a tool to check or estimate the
causality in data. Notice that the SEM methodology provides
a possibility to employ latent (unmeasured) variables. The
interpretation of structural equation as an algebraic object
without any causal content was criticized by Judea Pearl
who proposes to reestablish the original conception that the
causality is an inherent content of SEM. And it was him who
formally redefined the SEM methodology using his
(nowadays famous) approach to causality [9].

Bayesian networks are often used to represent causal
relationships, since its graph employs (oriented) arcs. But
the graphical representation is ambiguous, some arcs can be
reversed (see Ross Shachter in [11]). Actually, the acyclic
directed graphs represent conditional independence
relations but they do not necessarily embed causal
relations. But the nature of human thinking usually employs
the notions of cause and effect and finds it much easier to
construct the model on causal assumptions. And this is the
source of popularity of influence diagram models and
Bayesian networks (for details see again, e.g., Jensen and
Nielsen [5]). And this was also why Judea Pearl [9] has been
developing his approach of causal networks, i.e., Bayesian
networks with the relations explicitly defined as causal. The
causal Bayesian networks thus enable us to perform an
intervention (actively setting a value of variable X using the
intervention operator). This methodology provides a
possibility to estimate the impact of external actions from
the data collected before the intervention.

Now let us clarify several basic notions concerning the
modeling of causal relations. We will denote the variables
by big roman letters and their particular values by small
roman letters. A directed acyclic graph (DAG) is a graph with

all edges directed and containing no directed cycles.
A causal structure of a set of variables V is a DAG with each
node corresponding to a distinct element of V and each of
the arrows representing a direct functional relationship
among corresponding variables. A causal model can be
(according to [9]) specified as a pair M = (D, ®p) (where D
is acausal structure and @, is a set of parameters
compatible with D). The parameters @ assign a function
x; = fi(pa;;u;) to each X; € V and a probability measure
P(u;) to each U;, where pa; are particular values of
variables from PA;, i.e., of the parents of X; in D and where
each U; is arandom disturbance (unmeasured variable)
distributed according to P(u;), independently of all other U.

An intervention (or an action) denoted do(X = x) is
setting the fixed value by an external force on the specific
set of variables in the causal diagram. This is often
shortened to do(x) or X (see [9]). Given two disjoint sets of
variables X and Y, a causal effect of X on Y is afunction
from X to thespace of probability distributions on Y and is
denoted by P(y|X). For each realization xof X, P(y|X) gives
the conditional probability of Y = y induced by deleting
from the causal model all equations corresponding
tovariables in set X and substituting X = x in the
remaining equations. For more details and definition of two
following criteria see, e.g., [9].

A set of variables Z satisfies the back-door criterion
relative to an ordered pair of variables (X,Y) in a DAG G if:
1. nonodein Z is a descendant of X,

2. Z blocks every path between X and Y that contains an
arrow into X (i.e., every back-door path).

The important result of back-door criterion [9] states that if

a set of variables Z satisfies the back-door criterion relative

to (X,Y), then the causal effect of X on Y is identifiable and

can be calculated using the formula

PGIR) = ) PUIx,2) P(). (1)

A set of variables Z satisfies the front-door criterion
relative to an ordered pair of variables (X,Y) if:
1. Z intercepts all directed paths from X to Y,
2. back-door path from X to Z does not exist,
3. all back-door paths from Z to Y are blocked (synonym:
d-separated [9]) by X.
Then if Z satisfies the front-door criterion relative to
(X,Y) and if P(x,z) > 0, then the causal effect of X on Y is
identifiable and is given by the formula (see, e.g., [9])

PGIR) = Y P ) POl DPE). o)

Let us summarize that the causal effect of X on Yis
identifiable particularly in the following cases:

1. the back-door paths between X and Y does not exist,
the causal effect can be computed directly as the
corresponding conditional distribution,

2. observed variables from Z block every back-door path
between X and Y,

3. elements of Z satisfy front-door criterion relative to the
pair of variables (X,Y).

For an application of different conditions of
identifiability together with economical applications see
[13]. An example concerning the third case — the front-door
criterion — can be found in [1].
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3. DIRECT ESTIMATION OF CAUSAL EFFECT

We will demonstrate the above sketched apparatus on
rather toy examples taking advantage of software Lumina
Analytica [6] which provides the possibility to both
graphically represent the causal relations and perform the
calculations to identify the causal effect of an intervention.

First of all let us examine a case where our profit Z (e.g.,
on selling of some type of goods in a small shop) is
influenced by the price P and demand D but those two
factors are not independent. We believe that our setting of
price changes significantly the demand. For sake of
simplicity we categorize roughly all considered variables.
Our expert knowledge of the situation in the form of
(conditional) probabilities of considered variants is
summarized in Tables 1, 2 and 3.

Table 1 Probability distribution P(p)

Price Low High

0,4 0,6

Source: own example

Table 2 Conditional probability distribution P(d|p)

Price Low High
- Low 0,1 0,6
f=
£ Medium 0,4 03
']

2 High 0,5 0,1

Source: own example

Table 3 Conditional probability distribution P(z|p, d)

YaP()P(d|p)P(z|p,d) _
P(p)

= ZP(de)P(ZIp. d).
d

P(z|p) = P(zlp) =
(3)

Analytica software can easily evaluate this effect (Figure
2) and give us the probability of positive profit as an effect
of setting high price P(z = Gain|p = High) = 0,45.

@ Mid Value - Conditioning P(Profit | Pr...| = || & || &%
midv|  pid Value of Conditioning P(Profit | Price)

[i2] Profit Index w | [] Totals

Lall N Price Index W | [ Totals
Low High

Gain 0.245 0.450

Loss 0.755 0.550

Figure 2 An evaluation of the causal effect
Source: own work with Lumina Analytica software

4. IDENTIFICATION OF CAUSAL EFFECT USING BACK-
DOOR CRITERION

Let us now modify the situation and assume that the
supply is constant and the demand strongly influences the
price. Again we want to evaluate the effect of price P
change on the profit Z in the situation when both price and
profit are influenced by the demand D. The whole causal
model in Analytica software is depicted on Figure 3.

( ,«r--""-A[;emD
&mand)

Demand

:

&
/

Price Low High

Profit Loss Gain Loss Gain
- Low 0,95 0,05 0,7 0,3
E Medium 0,9 0,1 0,4 0,6
a High 0,6 0,4 0,1 0,9

Source: own example

The above described situation can be easily depicted as
a simple causal network like the one in Figure 1 (the index
nodes contain levels of considered variables and thus are
only auxiliary).

Demand | | ~"" Demand Price
Index P(Demand | Price) P(Price)
[ Price |
{ Index | ™~

| y/
Index A

Figure 1 A causal dependence of profit on price
Source: own work with Lumina Analytica software

Now we would like to fix the price on the level “High”
and see the effect on our profit. Since there does not exist
any back-door path heading into the Price node we can
compute the causal effect directly as the conditional
probability. The conditional probability is computed from
the joint distribution of profit, price and demand
marginalizing out the demand and using the conditioning by
price in the following formula

Price .
P(Price | Demand) |-

ZD
% 3
=
|
|
vy

[ Conditioning J [ Back door )

P(Profit | Price) P(Profit | do(Price))
Figure 3 A causal dependence of profit on price

Source: own work with Lumina Analytica software

In the modified example we again categorize roughly all
considered variables and our (expert) knowledge is again
given in the form of (conditional) probabilities summarized
in Tables 4, 5 and 6.

Table 4 Probability distribution P(d)

Demand Low Medium High

0,3 0,5 0,2

Source: own example

Table 5 Conditional probability distribution P(p|d)

Demand Low Medium High
@ Low 0,9 0,4 0,05
& High 0,1 0,6 0,95

Source: own example
Table 6 Conditional probability distribution P(z|p, d)

Demand Low Medium High

Profit Loss Gain Loss Gain Loss Gain
@ Low 0,95 0,05 0,9 0,1 06 04
& High 0,7 0,3 04 06 0,1 0,9

Source: own example
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W Mid Value - Conditioning P(Profit | Pr... | o = || &

Figure 4 Effect of conditioning in the model
Source: own work with Lumina Analytica software

A simple and generally used estimation of causal effect
is based on the process of conditioning. l.e., we evaluate

. Yq P(d)P(pld)P(zlp,d)
P(zlp) = P(zlp) = == ,
Xa P(d)P(pld)
which can be computed with Analytica (see Figure 4).

(4)

But this result is not correct since we do not take into
account the change in structure implied by the process of
intervention (again see, e.g., [9]). In order to get correct
result it should be computed according to Formula 1
P(If) = ) Pzlp,d) P(d), )
d
Again we can employ Analytica with the result shown on
Figure 5. We can see that the correct evaluation of causal
effect using the back-door criterion provides much lower
estimate of probability of positive profit as an effect of
setting high price, i.e., P(z = Gain|p = High) = 0,57.

mid¥|  Mid Value of Conditioning P(Profit | Price) midv|  Mid Value of Back door P(Profit | do(Price))
iZ3)| [ Profit Index w Totals i)l [ Profit index w Totals
Lall v Price Index w [> [ Totals Lall v Price Index W [> [7] Totals
Low High Low High
Gain 0.078 0.692 Gain 0.145 0.570
Loss 0.922 0.308 Loss 0.855 0.430

mMid Value - Back door P(Profit | do(Pr...| = || & || &3

Figure 5 Evaluation of causal effect using back-door criterion
Source: own work with Lumina Analytica software

5. CONCLUSION

We presented a methodology for evaluation of the
causal effect on a pair of simple examples. The results in the
latter example show that the correct computation using
causal approach provides significantly different probability
estimates which can generally lead to different decision in
comparison to the recommendations of usually — but
incorrectly — used method of conditioning.

Authors also sketch the features of decision support tool
Lumina Analytica which provide graphically attractive and
easy-to-use way to evaluate the effects of intervention.

Notice that the situation can be enriched by employing
alatent variable influencing both demand and profit
variables in which case the causal effect still remains
identifiable (for details refer again to Judea Pearl [9]).
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